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Abstract 

Predictive analytics offers a potential game changing capa-
bility for Naval tactical decision superiority. Tactical opera-
tions could take a significant leap in progress with the aid of 
a real-time automated predictive analytics capability that pro-
vides predictions of second and third order effects of possible 
courses of action. This future capability would accompany 
current developments in the use of artificial intelligence and 
data analytics to improve battlespace knowledge and offer 
automated battle management aids to the tactical warfighter. 
As the automated battle management aids develop tactical 
course of action options the predictive analytics capability 
could predict how the adversary might respond to each course 
of action option. The predictive analytics capability could 
continue to “wargame” possible blue force/red force actions 
and responses—generating predictions of second and third 
order effects. These predictions offer the tactical warfighter a 
more strategic perspective in making tactical course of action 
decisions. By performing this analysis using an automated 
aid with artificial intelligence, it allows the capability to sup-
port real-time decisions and to analyze great amounts of data 
(both sensor data and historical data) and handle highly com-
plex tactical environments This real-time wargaming trans-
lates into high order computations that would be impossible 
to be performed manually in the short reaction times given. 
This paper discusses the results of a study of predictive ana-
lytic capabilities in the naval maritime domain. 

I. Introduction 
A predictive analytics (PA) capability – that can take into 

account possible consequences and effects into the process 
of decision-making – is key to enabling decision superiority 
for naval forces. The PA capability, based on automated data 
analytics, would support battle management aids (BMA) by 
developing “what-if” and “if-then” predictive scenarios to 
shape the synthesis of future intelligent decisions and adap-
tive capabilities. This conceptual capability would inform 
decisions concerning courses of action (COA) based on 
what the longer-term effects are projected to be. It would 
enable short-term and long-term objectives to be weighed as 
tactical decisions are made. In essence, a PA capability is a 
critical step in enabling a real-time wargaming capability for 
naval operations. 

The goal of decision making is to change the probabilities 
of outcomes to make preferred outcomes more likely. The 

decision-maker’s choices act upon the world, causing 
changes in outcome probabilities (Cox 2015). Yet, this cru-
cial concept of causal efficacy is seldom developed in detail 
in decision analysis, and the fact that formal probability the-
ory applies only to events rather than to actions and their 
consequences is seldom emphasized (Pearl 2008). The use 
of Bayesian Networks (BN) and causal graph models may 
provide a solution to predict probabilities of outputs given 
inputs and observations. These types of models can be used 
to build quantitative representations of complex dynamic 
situations. Dynamic BN models and BN-learning algo-
rithms can learn from data to create an adaptive capability 
that can predict outcomes in a changing environment. 

Using methods of machine learning to process and ana-
lyze large amounts of heterogeneous data and information, 
artificial intelligence (AI) technology can make predictions 
about probable effects, outcomes, and responses. These PA 
and AI methods can provide a powerful capability for tacti-
cal decision-making. Armed with the knowledge of possible 
effects and adversary responses to courses of action, warf-
ighters can leap ahead in terms of applying longer-term 
strategy to near-term warfare decisions. A critical enabler of 
developing an executable model of blue forces and red 
forces is the incorporation of the correct metrics, premises, 
and assumptions (Talbot and Ellis 2015). 

This paper begins (in Section II) with a description of the 
authors’ concept for a future predictive analytics capability 
that could support a real-time operational automated deci-
sion aid. Section III discusses data concepts required to sup-
port such a future PA capability. Section IV contains an 
overview of AI and game theoretic methods that show prom-
ise for enabling an automated PA decision aid. Finally, Sec-
tion V contains the conclusion. 

II. A Conceptual Naval Maritime Predictive 
Analytics Capability 

The ability to perform predictive analytics in support of 
maritime operations, such as planning and tactical warfare, 
requires a set of analytic capabilities that study the available 
data, develop COA options, and make predictions concern-
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ing their effects for the purpose of selecting options with de-
sired effects. Figure 1 illustrates a conceptual framework for 
a PA capability for the naval maritime domain. 
 Required inputs to this capability are shown as self-
awareness and situational awareness knowledge. Self-
awareness amounts to the development of a blue force 
model which keeps track of the location, status, and capabil-
ities of the blue force resources or warfighting assets. Situa-

tional awareness consists of real-time sensor data feeds that 
are fused and analyzed to provide an understanding of the 
battlespace or operational environment. From the blue force 
and situational awareness models, a set of possible COAs 
(shown as step one) are developed that represent a contin-
uum of possible blue force actions that can be taken at any 
moment in time. These include, as examples, the placement 
or movement of assets, sensor tasking, weapon engagement 
decisions, the and the use of countermeasures. 
 The capability requires a model of the red force, or adver-
sary, that estimates what is known about the adversary as 
well as predicts what the adversary knows about the blue 
force and the situation. The PA capability evaluates (step 2) 
each COA option in terms of our knowledge of the red 
forces to predict (step 3) the effects of each option on the 
adversary. Steps 2 and 3 produce a set of predicted 1st order 
effects. Each blue force COA option has a direct mapping to 
its predicted 1st order red force effect.  

 Each of the 1st order effects is then analyzed (step 4), 
based again on the red force model, to estimate a set of pos-
sible adversarial responses. These constitute 2nd order ef-
fects. Each 1st order effect may map into one or more possi-
ble 2nd order effects. 
 The 2nd order effects, which may now contain a signifi-
cant number of possibilities, are analyzed (step 5) using 
knowledge of our blue forces (contained in the blue force 

model) to predict the 3rd order effects.  The 3rd order effects 
are a set of predicted blue force states that result from the 
possible adversary responsive actions. Thus, there is a one-
to-one mapping of possible 2nd order effects to possible 3rd 
order effects. 
 The set of 3rd order effects are evaluated (step 6) to iden-
tify undesirable outcomes. Any undesired 3rd order effects 
can be used to feedback into the set of blue force COA op-
tions and eliminate undesired COAs. Thus, the conceptual 
PA capability is an analysis tool to provide a deeper under-
standing of the COA options in terms of their possible causal 
effects and expected consequences. 
  Each step in the PA capability can include an estimate of 
the certainty of the analysis, providing a level of confidence 
in the predictions. This would add even greater refinement 
in terms of evaluating the desirability or undesirability of 
3rd order effects, and consequently blue force COA options. 

Figure 1 – Conceptual Framework for Predictive Analytics Capability 



The conceptual PA capability can enhance future auto-
mated tactical decision aids. Figure 2 illustrates a tactical 
decision aid, showing how capabilities for PA and 
knowledge discovery would interact with the tactical re-
sources (shown along the bottom row) as well as the “deci-
sion engine.” The conceptual resource management capabil-
ity would assess and prioritize missions and use those results 
to develop the COAs, which the PA capability would eval-
uate based on predicted 1st, 2nd, and 3rd order effects. 

III. Data and Knowledge Concepts for Predic-
tive Analytics 
 A naval tactical “decision-maker is not interested in data 
or big data as such; but the knowledge it provides. (Zhao, 
Kendall, and Young, 2015, p. 22).” They are interested in 
actionable knowledge required to gain and maintain the tac-
tical advantage. Gaining and maintaining knowledge of the 
maritime domain is not only a required capability that ena-
bles the conceptual PA capability, but it has a direct impact 
on the accuracy of the predictions made. The levels of com-
pleteness and accuracy dictate how good the internal models 
are as well as the predicted 1st, 2nd, and 3rd order effects. 
 Three categories of tactical maritime knowledge are illus-
trated in Figure 3 as knowledge of the blue forces, 
knowledge of the red forces, and knowledge of the opera-
tional situation. Conceptually, computer-aided models of 
each could be created to support real-time naval operations 
as well as the PA capability. Each model could be developed 
and continuously updated based on the input data that is con-
stantly changing to reflect the changes in the states of the 
blue forces, the red forces, and the environment. 
 The blue force model would represent all that is known 
about the blue forces at any given time. It would provide the 
Navy with self-awareness by containing what is known 

about the status, location, and readiness of the blue force 
warfighting resources or assets. The model would assess the 
readiness of each resource as well as the overall force read-
iness. The model would contain an assessment or prediction 
of each resource’s capability to perform an assigned COA. 
Examples include probability of kill, probability of detec-
tion, probability of jamming, etc. The model could also pre-
dict overall force capability given a particular threat envi-
ronment. 
 The red force model is envisioned as an estimated predic-
tion of what is known about the adversary based on data and 
intelligence available. This model would estimate what 
types of capabilities the red force possesses and approximate 
the overall red force readiness. The model would predict the 
adversary’s intent, tactics, and strategies for the purpose of 
predicting how the adversary might act in different situa-
tions or respond to blue force actions. The model could 
make an educated guess as to what the adversary knows 
about the situation and about the blue forces. This prediction 
would be based on an assessment of the blue force’s possible 
visibility to the red force based on what is known about the 
adversary’s location and surveillance capabilities. The red 
force model would become the Navy’s prediction of what is 
known about the adversary. 

 The operational situation model would constitute the cur-
rent situational or maritime awareness. This model, based 
primarily on real-time sensor data, would contain the under-
standing of the battlespace in terms of the weather, combat 
identification, and threat assessment and tracking. It would 
be comprised of information on the location, kinematics, 
and identification of all objects (friendly, neutral or foe) in 
the area of interest. The model’s completeness, accuracy, 
and up-to-date-ness would depend entirely on the data col-
lected. The operational situation model would also contain 

Figure 2 – Predictive Analytics as a Core Capabil-
ity for an Automated Tactical Decision Aid 

Figure 3 – Three Knowledge Models to Support 
Predictive Analytics 

Figure 3 – Conceptual Computer-Aided Models as 
Enablers for a Predictive Analytics Capability 



predictions of projected future states of the area of interest. 
Examples of this could include projected impact points of 
threat missiles, projected locations of enemy aircraft and 
ships, and future weather and environmental conditions. 
  Developing and maintaining these changing and action-
able models depends on a number of data collection, fusion, 
security, and management capabilities. The naval tactical 
domain has data architectures in place for collecting, pro-
cessing, and fusing sensor data for developing situational 
awareness of the battlespace. This data supports combat 
identification, threat identification and tracking, and projec-
tions of kinematic objects in the area of interest. 

In order to develop an internal model of the blue force, 
the Navy would also need to collect data concerning blue 
force asset status, location, and capability (Johnson, 2019, 
Rowe 2019). Brown (2019) developed a conceptual archi-
tecture for collecting blue force asset data to support the de-
termination of force readiness. Self-awareness data could 
also be used to determine individual resource readiness and 
general blue force self-awareness. 

In order to develop an internal model of the red force, the 
Navy needs to analyze the situational awareness data along 
with information from intelligence sources to make infer-
ences about the capabilities, location, and readiness of red 
force assets. The use of intelligence sources could be used 
to model likely red force intent, tactics, and strategies.  The 
combination of predicted red force asset knowledge with 
knowledge of our blue force assets can be used to make in-
ferences about the adversary’s knowledge of the blue force. 

Maintaining knowledge of the real-world is a critical part 
of implementing a PA capability for the tactical Navy. The 
models provide a “belief state” that become the basis for 
making predictions about the consequences of COAs. Rus-
sell and Norvig (2010, p. 480) write that the belief state is a 
“representation of the set of all possible worlds” that a sys-
tem may exist in. The belief state is then used to generate 
COA options and corresponding possible outcomes and 
consequences, and to evaluate these options.  

IV. Artificial Intelligence and Game Theoretic 
Methods for Predictive Analytics 

 A number of data analytic methods exist that can support 
the many different types of estimation and predictive capa-
bilities that have been described up until this point. For ex-
ample, Kalman filters have been widely used for projecting 
the future kinematic states of moving objects in the bat-
tlespace. This is a form of computational prediction. Data 
fusion analytics are used to combine and assess heterogene-
ous data from different types of sensor to enhance our ability 
to identify and understand combat objects in the battlespace. 
This section focuses on AI and game theoretic methods that 
can potentially be used to evaluate the COA options by pre-
dicting 1st, 2nd, and 3rd order effects. 

A.   Predictive Analytics as a Data-Driven and Auto-
mated Process 

 Abbott (2014) describes predictive analytics as a data-
driven process of discovering interesting and meaningful 
patterns and inducing models from the data, rather than bas-
ing results on assumptions made by the analyst. PA is a pro-
cess that results in discovering variables to be included in 
the model, parameters that define the model, weights or co-
efficients in the model, and also the very form of the model 
itself. These models can then be used to build predictions. 
PA, as described by Abbott (2014), does not do anything 
that a human analyst could not accomplish manually given 
enough time. The reason to automate the process is because 
the number of variables and permutations can quickly result 
in thousands of computations. Automated algorithms can 
sift through the many potential combinations of data to iden-
tify patterns and interesting results. 

One aspect of the conceptual PA capability that is beyond 
human capability is the ability to store or “remember” all of 
the numerous COA options, permutations, effects, and out-
comes. In a tactical combat situation, these options and ef-
fects would be changing continuously as the environment 
changes, creating an even more complex memory challenge.  
And for the envisioned PA capability, the 1st, 2nd, and 3rd 
order effects and permutations needs to be stored and easily 
accessed for evaluation. 

Automation also plays an important role in providing data 
fusion, correlation and analytics for developing and contin-
ually updating the blue force, red force, and operational sit-
uation models required for the conceptual PA capability. 
 
B.  Statistical Methods 
 Statistical methods are widely used to perform a confirm-
atory analysis concerning a hypothesis involving a relation-
ship between inputs and outputs (Abbott 2014). The analysis 
confirms or denies the causal relationship and quantifies the 
degree of that confirmation or denial. 
 Regression analysis is a statistical method for analyzing 
and modeling the relationship between a continuous de-
pendent variable and an independent variable to build a 
model for making predictions. The first step is to identify 
and explain the best model that represents the relationship 
between the dependent and independent variables. The sec-
ond step is to use this model to predict future values of the 
dependent variable given specific values of the independent 
variable. (Kalaian and Kasim 2017) 
 Discriminant analysis is a statistical technique that uses 
the information from a set of independent variables to pre-
dict the value of a discrete (categorical) dependent variable, 
which represents the mutually exclusive groups in the pre-
dictive model (Kalaian and Kasim 2017). Discriminant anal-
ysis can be used to identify the best combination of inde-
pendent variables or predictors, that provide the best dis-
crimination between groups in an effort to accurately predict 



a membership in a particular group. This technique can be 
used for threat identification (as friendly, neutral, or foe) to 
match a tracked object’s characteristics to the appropriate 
group’s predictive model. 
 Table 1 lists differences between using statistical methods 
and PA methods. Statistical methods can apply to small data 
sets and rely heavily on ensuring the models are built 
properly and are typically linear; whereas PA methods draw 
heavily on machine learning and AI, require lots of data, and 
have no provable optimum solution.  
 
Table 1 – Statistics vs. Predictive Analytics (Source: Abbott 
2014) 

Statistics Predictive Analytics 
Models based on theory; 
there is an optimum. 

Models often based on non-
parametric algorithms; no 
guaranteed optimum. 

Models typically linear. Models typically nonlinear. 
Data typically smaller; algo-
rithms often geared toward 
accuracy with small data. 

Scales to big data; algorithms 
not as efficient or stable for 
small data. 

The model is king. Data is king. 
 
 
C. Graph Theory Methods 
 Bayesian networks (Bayes network, belief network, deci-
sion network, Bayes model, or probabilistic directed acyclic 
graphical model) are a category of statistical models that 
represent a set of variables and their conditional dependen-
cies in the form of graphs. Bayesian networks offer a sys-
tematic way to represent relationships between variables 
and their dependencies explicitly and concisely—greatly 
simplifying the process of specifying probabilities for the 
large numbers of variables that may exist (Russell and 
Norvig 2010).  
 Bayesian networks are ideal for taking an event that oc-
curred and predicting the likelihood that any one of several 
possible known causes was the contributing factor. For ex-
ample, a Bayesian network could represent the probabilistic 
relationships between diseases and symptoms. Given symp-
toms, the network could be used to compute the probabilities 
of the presence of various diseases. Efficient algorithms can 
perform inference and learning in Bayesian networks. 
Bayesian networks that model sequences of variables are 
called dynamic Bayesian networks. Generalizations of 
Bayesian networks that can represent and solve decision 
problems under uncertainty are called influence diagrams.  
 The network’s nodes represent observable quantities, hy-
potheses, or unknown parameters. The edges represent con-
ditional dependencies. Each node is associated with a prob-
ability function whose input is a particular set of values rep-
resenting the node’s parent variables and whose output is the 
probability of the variable represented by the node. 

 A Bayesian network representing the probabilistic varia-
bles and their relationships for the combat identification of 
an air object is shown in Figure 4. This network shows fac-
tors involved in determining the combat identification of an 
airborne object based on what information is known about 
the object and its environment. Factors, such as what is 
known about the object’s kinematics, the object’s proximity 
to the airport and the level of turbulence in the near environ-
ment, are shown as variables (or nodes) in the network. The 
network also contains nodes representing how the object is 
identified, such as by intelligence, interrogation friend or foe 
(IFF) or by electronic surveillance means (ESM). It can be 
noted that the directions of the arrows can be used to show 
the causal relationship between the actual identity (in the 
real world) and how it will affect the factors that allow it to 
be identified. The arrow directions can also be reversed (as 
in Figure 4) to show that given a variety of information 
sources, they can be used to support the identification of the 
object. 

Figure 4 - An Example Bayesian Network for Combat 
Identification (Source: van Gosliga and Jansen, 2003) 

 
D. Decision Theory 

Decision theory provides methods for selecting among 
actions based on the desirability of outcomes, often in situ-
ations that are only partially understood. Russell and Norvig 
(2010, p. 610) describe these situations as “nondeterministic 
partially observable environments.” Thus, the AI system 
may not know the current state completely, so a random var-
iable is used to represent the possible outcome states. The 
decision-maker’s preferences are represented by a utility 
function which assigns values corresponding to the desira-
bility of the possible outcome states. 

Automation can support the development and application 
of utility functions. The utility functions become complex 
for complex decision spaces, such as military tactical oper-
ations. Such problem spaces are characterized by many pos-
sible outcomes and many possible factors affecting each 
outcome. They also introduce uncertainty and dependences 



among the variables representing factors. Automated sys-
tems can develop probability models reflecting the stochas-
tic processes that generate outcomes. The systems must also 
model the error in the utility estimates that may be intro-
duced by unknowns, incomplete knowledge, and bias. The 
use of multi-attribute theory along with the models of ex-
pected utilities and associated error can provide an auto-
mated aid for making decisions.  

Decision theory can be thought of as the combination of 
probability theory and utility theory. The use of a decision 
network, also called an influence diagram, combines Bayes-
ian networks with node types for actions and utilities. Deci-
sion networks provide a useful framework to aid AI in mak-
ing complex decisions involving multi-attributes, multi-var-
iables, many possible outcomes, and knowledge uncer-
tainty. Figure 5 shows an example of an influence diagram 
with a military application. The oval nodes, referred to as 
chance nodes, represent random variables. The rectangle 
nodes, called decision nodes, represent decision points 
where there is a choice among actions. The hexagonal nodes 
are the utility nodes which represent the AI system’s utility 
function. 

 
 

E. Learning-Driven Methods 
Learning in terms of AI systems is defined as “the capa-

bility of drawing intelligent decisions by self-adapting to the 
dynamics of the environment, taking into account the expe-
rience gained in past and present system states, and using 
long term benefit estimations” (Kim 2018, p. 222). Imple-
menting learning algorithms requires large amounts of train-
ing data. Kim (2018) explains that progress is being made in 
learning algorithmic game theory which lies in the intersec-
tion of game theory and AI learning algorithms. These meth-
ods show potential for the military domain by implementing 
many iterations of a wargame and training the learning al-
gorithms to identify the best COAs and blue force strategies 
based on desired game outputs. 
 Supervised learning (also referred to as predictive model-
ing) is a method that uses a “supervisor” target variable to 
represent the answer to a question of interest or a value that 
is unknown but could support decision-making if known. 
Supervised learning uses “ground truth” to train the AI sys-
tem using prior knowledge. The goal is to learn a function 
given some input data and desired outputs that best approx-
imates the relationship between the input and desired output. 

Figure 5 – An Example Decision Network for Military Actions (Adapted from Campos and Ji 2008) 



This function can then be used to classify target variables or 
perform regression on continuous target variables. 

AI machine learning methods can be used to support pre-
dictions based on comparing real-time data with “best mod-
els.” Figure 6 shows a process of first training the system to 
find a best model by running many iterations allowing su-
pervised learning to occur. The best model can then be used 
in the operational system (in the second row) as a standard 
by which to compare incoming real-time data. As data be-
gins to match the model, future state predictions can be in-
ferred. 

Figure 6 – Example of Supervised Learning for Predictive 
Analytics 

 
 Unsupervised learning (or descriptive modeling), has no 
target variable or desired output. The goal of unsupervised 
learning is to infer the natural structure present within a set 
of data points. Input data is analyzed and grouped together 
based on the proximity of input values to each other. The 
groups are then segmented and labeled. Unsupervised learn-
ing is useful for exploratory analysis and for dimensionality 
reduction. Ontanon, Montana, and Gonzalez (2014) de-
scribe the process as “learning from observation” (LFO) and 
explain that the process discovers a “mapping” from the per-
ceived state of the environment and actions. 
 Machine learning has made continued progress in devel-
oping methods that can generalize from data, adapt to 
changing environments, and improve performance with ex-
perience, as well as progress in understanding fundamental 
underlying issues. By integrating over the distribution of op-
ponent strategies rather than taking a simple empirical aver-
age, insights from game theory can be used to derive novel 
learning algorithms (Blum 2008). Applying machine learn-
ing to game theory may shed light on possible opponent 
strategies by improving a program by playing a game many 
times against a knowledgeable opponent player. Unsuper-
vised learning enables modeling of the real-world and red 
forces when sensor data is not matching known (supervised 
learning) constructs. It can support the classification of sen-
sor observations and predict some inferential knowledge. 
Doherty et. al. (2016) propose using a multi-step process of 

first employing unsupervised learning to explore unlabeled 
datasets to cluster and classify information in order to con-
struct a supervised classification model. Therefore, the AI 
system is, in a sense, training itself in an automated fashion. 
 Most game-learning algorithms are designed to improve 
a program based on watching or playing against knowledge-
able opponent players. Although it is certainly important to 
understand how a program (or player) could learn from good 
players, it is equally important to know how those good 
players became good in the first place. Kim (2018) explains 
that some learning work has considered how programs 
might become strong players while relying neither on active 
analysis nor on experience with experts. Most of these ap-
proaches can be considered as self-play, in which either a 
single player or a population of players evolves during com-
petition on large numbers of contests. 
 
F.  Game Theoretic Methods 
 Game theory methods encompass a wide range of behav-
ioral relations among players and is an umbrella term for the 
science of logical decision-making in humans and comput-
ers. Several game theoretic methods can support the naval 
tactical predictive analytics application. These include de-
scriptive interpretation, normative (or prescriptive) interpre-
tation, counterfactuals, and regret minimization. 
 Descriptive interpretation is a way of viewing game the-
ory that attempts to predict how an adversary will act and 
respond in different strategic settings. This ability was in-
cluded as part of the conceptual PA capability. Descriptive 
interpretation suggests that game theory can successfully 
predict how an adversary will make decisions given a set of 
circumstances. This method assumes that the game players 
are rational and will act to maximize their payoffs. While 
this method provides insights, it will be limited by the im-
perfect knowledge held by both the blue force and the red 
force. 
 Normative or prescriptive interpretation is a game theory 
method of selecting the best COAs for players. It is prescrip-
tive in that this method determines what the player “should 
do,” rather than actually predicting what a player might do. 
Normative (prescriptive) interpretation is a fundamental ap-
proach to the conceptual PA capability proposed in this pa-
per. This method attempts to determine the best blue force 
COA based on what is established as the best outcome, or 
the most desired 3rd order effect. A Nash equilibrium (an 
important game theory concept) constitutes a player’s best 
response to the actions of other players. Thus, the concep-
tual PA capability could provide an analytical way to deter-
mine when the blue force’s COA constitutes a Nash equilib-
rium. However, it is important to note that there are situa-
tions in which it is best to play a non-equilibrium strategy if 
one expects the red force to do so, or if blue force assets 
need to be conserved for a longer-term mission. 



 Counterfactuals (another game theory concept) are claims 
or hypotheses that are contrary to the facts. A counterfactual 
can be thought of as a hypothetical state of the world used 
to assess the impact of action. Counterfactuals are often 
written as conditional statements in which the conditional 
clause is false—imagining hypothetically what could have 
happened. Counterfactual thinking can support the concep-
tual PA capability by considering as many possible hypo-
thetical future states as possible and analyzing them to elim-
inate undesired COAs. 
 A related game theory method is regret minimization. 
This is a method of running many possible counterfactual 
hypotheses and carefully altering different COA decisions 
in each run (or game) to see if this has a positive or negative 
effect on the outcome. Regret refers to how much better a 
player would have done if they had made one decision over 
another at a specific decision point in the game. 
 Zinkevich et. al. (2007) describe counterfactual regret 
minimization (CFR) as a self-play algorithm that learns to 
play a game by repeatedly playing against itself. It starts 
with a strategy that is uniformly random, where it will play 
every action at every decision point with equal probability. 
It simulates playing games against itself and after every 
game, it revisits decisions and finds ways to improve its 
strategy. It repeats this process for all combinations of 
games (which can amount to millions or billions of runs), 
improving its strategy each time. As it plays, it gets closer 
and closer towards an optimal strategy for the game: a strat-
egy that can do no worse than tie against any opponent. The 
way it improves over time is by summing the total amount 
of regret it has for each action at each decision point and 
selecting the combination with the least amount of regret. 
Positive regret for a particular COA means that the blue 
force would have done better if they had taken that action 
more often. Negative regret means that the blue force would 
have done better by not taking that action at all.  
 After each game in CFR with the program playing against 
itself, it computes and adds in the new regret values for all 
of the decisions it just made. It then recomputes its strategy 
so that it takes actions with probabilities proportional to their 
positive regret. If an action would have been good in the 
past, then it will choose it more often in the future. It repeats 
this process for billions of games. Therefore, CFR produces 
a long sequence of strategies that it was using on each game. 
Counter-intuitively, that sequence of strategies does not nec-
essarily converge to anything useful. However, if you com-
pute the average strategy over those billions of strategies in 
the sequence, then that average strategy will converge to-
wards a Nash equilibrium for the game. In a chess-like 
game, this average strategy can then be used against any op-
ponent. 
 However, naval tactical situations are vastly more com-
plex than chess-like games. The numbers and types of blue 
force and red force warfare resources, tactics, and COAs are 

not fixed and sequential as they are in a chess game. In naval 
operations, the resources, tactics, and COAs can be vast, dy-
namic, changing over time, can occur at any time, and are 
largely unknown to the opponent. Therefore, the game the-
ory approach must function with incomplete information 
and large numbers of instances. Zinkevich et. al. (2007) de-
scribe a process of implementing regret minimization in 
games with incomplete information to determine a Nash 
equilibrium for very large instances to minimize counterfac-
tual regret which minimizes overall regret. In this process, a 
framework creates an abstraction of a particular decision 
point to approximate the behavior of the CFR. These ap-
proximations are then mapped back into the full game. 
Brown et. al. (2019) explain that this CFR abstraction 
method can be manual and domain specific and may miss 
strategic nuances of the game. They describe the use of Deep 
CFR which uses deep neural networks instead of the CFR 
abstraction to approximate the behavior of CFR in the full 
game. Deep CFR shows promise as a game theoretic method 
for PA but requires significant computational power. 

V. Conclusion 
 This paper presented a conceptual framework for apply-
ing PA to naval tactical decisions as an automated battle 
management aid. It described the need to develop and main-
tain knowledge models of the blue force, red force, and op-
erational situation and described how these models are re-
quired for a future PA capability. The paper evaluated AI 
and game theoretic methods, describing how a combination 
of statistical, graph theory, decision theory, learning-driven, 
and game theory methods can be applied to enable a future 
PA capability.  
 The payoff for implementing a PA capability as part of an 
automated battle management aid is predicting 1st, 2nd, and 
3rd order effects of possible COAs in order to make the most 
effective tactical decisions. This real-time wargaming capa-
bility would enable short-term and long-term objectives to 
be weighed, contributing to ensuring that preferred out-
comes are more likely. A PA capability could bridge the gap 
between tactical and strategic thinking, emphasizing causal 
efficacy – or consequences of actions. In the decades ahead, 
the Navy will need to maintain maritime decision superior-
ity by incorporating strategic thinking into naval tactical de-
cisions – this can be accomplished with predictive analytics. 
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